The era of CubeSats is definitely in full swing. CubeSats ‒ tiny, versatile spacecraft ‒ are small satellites commonly used in low Earth orbit (LEO) for various applications, such as remote sensing and communications.   

These miniature spacecraft are built to standard dimensions of the 10 cm cubic units with specified electrical power and mass capabilities. Currently, lighter, cheaper and less power-consuming than traditional satellites, CubeSats are mainly orbiting in low Earth orbit about 70 to 2,000 km (approximately 45 to 1,200 miles) above the Earth. 

CubeSats are used for space education and scientific research. In the future, CubeSats, already being used in interplanetary missions, will go farther into space than any CubeSats have gone before.

Merve Kara from AeroTime has spoken with Yigit Cay, an engineer and a Ph.D. student at  Kyushu Institute of Technology (Japan), working on BIRDS-4 Satellite Project, about how CubeSats are revolutionizing space exploration.

The CubeSat program began in 1999 and since then, 1,088 of them have been launched. How is the increasing popularity of CubeSats across the globe affecting space science?

Sending a satellite to space is an expensive job to do. For this reason, at the beginning of the space era, we had to rely on space agencies. We call the current era the “new space” as it has become cheaper and easier to send a spacecraft to space. Satellite development rate has also significantly increased as well as the complexity of the missions onboard.

There are orbits called low Earth orbit (LEO). LEO requires the lowest amount of energy for a satellite to be operated while orbiting the Earth. The possibility of sending your CubeSat(s) to the International Space Station (ISS) and them being released from there made launch costs really low. So technology has become possible even for universities or small companies with limited budgets. 

As ISS started to provide CubeSat releases, companies and universities started to build more CubeSats. And as the technology demand increased, they have begun attempts to go to higher orbits and deeper into space with CubeSats. In this era, it is not only NASA, ESA (European Space Agency), ROSCOSMOS (Space Agency of the Russian Federation), or JAXA (Japan Aerospace Exploration Agency) anymore. As new challenges are attempted by small or inexperienced organizations (compared to space agencies), better scientific knowledge and engineering are required by these institutions. 

I think that the focus on scientific research now is higher than ever before.  Previously, satellites were mainly about telecommunication or remote sensing. Now, scientific research in this area is increasing all over the world.

Image: NASA

How long does it take to make a CubeSat, particularly for a country with limited satellite-building experience?

In the CubeSat level, two years is not so long anymore. It is possible to do it in less than two years. For instance, Spire is a space-to-cloud data and analytics company, which claims having built a satellite in a month. In that manner, if universities do not have qualified engineers, students can learn how to build a satellite within one and a half years. However, you need a team and this team needs to have different aspects [of knowledge]. A spacecraft is a really complex device. So every individual member of the team becomes an experienced engineer for a different aspect.

When a country enters into this project, it does not need to provide facilities and equipment to test the satellite. We can test everything in Kyushu Institute of Technology. What they are providing is money and their qualified engineers to be educated in Japan to become proper space engineers. The aim of the project is to educate students so that after they learn how to build a satellite, they can go back to their countries and teach other students how to build a satellite. So they will form a new local group and lead the group to send more satellites into space. Capacity building is the key in this project and many developing countries have benefited from this project already.